Libro acquistabile con carte di credito e carte prepagate Postepay.

 

Libro acquistabile con Carta Docente.

 

Libro acquistabile con Carta Cultura Giovani e Carta del Merito.

 

Libro acquistabile in tre rate mensili Klarna.

 

Il costo del libro sarà addebitato solo all’avvio della consegna.

 

Scegli il punto di ritiro dei libri più comodo.

Spazi topologici, metrici e di Alexandroff

Riferimento: 9788893854030

Editore: Esculapio
Autore: D'Andrea Francesco, Lomonaco Luciano Amito
Pagine: 144
Formato: Libro in brossura
Data pubblicazione: 08 Settembre 2023
EAN: 9788893854030
Non disponibile
22,00 €
IVA inclusa
Quantità

Descrizione

La topologia è quell'area della matematica che studia le proprietà degli oggetti geometrici che sono preservate in caso di deformazioni continue, ovverosia intuitivamente deformazioni ottenute senza tagliare o incollare. È un campo importante  della matematica moderna, intimamente legato all'analisi matematica, e con applicazioni in quasi ogni altro ramo della matematica. Questo testo è pensato come manuale compatto di topologia, scritto in modo da essere accessibile anche a studenti di corsi di laurea diversi da quello in matematica, come ad esempio fisica o ingegneria. La prima parte è dedicata alle nozioni di base di topologia generale, per finire con alcuni cenni sul gruppo fondamentale di uno spazio topologico. Nella seconda parte discutiamo le proprietà di topologie indotte da una (pseudo-)metrica. Questa parte include alcuni teoremi molto importanti in analisi, come ad esempio il teorema di Stone e i teoremi di Borel-Lebesgue e di Heine-Borel. L'ultima parte è dedicata alle topologie indotte da relazioni d'ordine (o più in generale da preordini): si tratta degli spazi detti di Alexandroff, che includono tutti gli spazi topologici finiti. Tale corrispondenza fra spazi di Alexandroff e preordini è la chiave di volta per l'utilizzo di metodi topologici nella teoria combinatoria degli insiemi parzialmente ordinati. Il libro si chiude con un teorema di classificazione di spazi topologici finiti.